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bstract

ailure probability of ceramic components in multiaxial stress state can be predicted using the uniaxial test results (e.g. tension test, 4-point-
ending test) when a suitable multiaxial criterion, which introduces the triaxiality of stress state, is known. In this article, tension–torsion tests
ere performed with alumina (Alsint 99.7) specimens from a standard manufacturer under two different load cases. Next experimental results were

ompared with the numerically calculated effective volume and effective surface values according to different multiaxial failure criteria. It was

oncluded that the specimens failed due to surface flaws and the normal stress criterion is the most appropriate criterion for the strength prediction
f alumina ceramics under multiaxial stress state. Furthermore, it was shown that the Weibull modulus does not play a big role for the prediction
f strength of alumina ceramics.

2010 Elsevier Ltd. All rights reserved.
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. Introduction

Since the strength of advanced ceramics depends on the size
f the most critical flaw which varies from specimen to spec-
men, fracture of ceramics is a probabilistic event as a result
f randomly distributed flaws in the material. In order to use
eramics as engineering materials, the scatter of strength has to
e characterized. The most widely used expression for this char-
cterization is the cumulative distribution function introduced by
eibull1,2. The fundamental assumption of the Weibull theory is

weakest link hypotheses”, i.e. the specimen fails, if its weakest
olume element fails.

The design challenge for the reliable use of ceramic materi-
ls in technical applications is the computation of their failure
robability3 under prescribed boundary and loading conditions.

f a suitable multiaxial failure criterion, which introduces the
riaxiality of the stress field (e.g. effect of shear stresses), is
nown, the failure probability of ceramic components under
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ltiaxial failure criteria

ultiaxial stress state can be predicted using the results of uni-
xial tests.4 Under multiaxial stress state, cracks are subjected
o Mode-I (crack opening caused by normal stress perpendicular
o the crack plane) as well as Mode-II (crack opening by shear
tress acting in the crack plane and perpendicular to its leading
dge) and Mode-III (crack opening by shear stress acting in the
rack plane and parallel with its front) loading, depending on the
osition and orientation of the crack plane relative to the prin-
ipal stresses.5 Therefore the loading of a given flaw has to be
xpressed in terms of a suitably defined equivalent stress which
epends on the orientation of the crack plane in the local stress
eld.

A variety of criteria have been proposed for the definition of
quivalent stress but due to insufficient information about the
rack extension mechanism, it is still not clear which of these
riteria is the most appropriate one for ceramic materials. Bansal
t al.6 conducted 3-point and 4-point bending tests on alumina
96% Al2O3) specimens with two different sizes which have

n average grain size of 5 �m. After that, with four different
ombinations (small 3-point vs. small 4-point, small 3-point vs.
arge 4-point, small 4-point vs. large 4-point, large 3-point vs.
arge 4-point) they compared the experimentally measured mean

dx.doi.org/10.1016/j.jeurceramsoc.2010.08.008
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trength ratios with the predicted ones based on effective vol-
me and effective surface calculations. Effective volume and
ffective surface values were determined in the usual way.7,8

n all cases, the theoretically calculated mean strength values
ccording to ratio of effective surfaces showed a better agree-
ent with experimental results. For the case (small 4-point

s. large 4-point), they obtained approximately 7% deviation
etween the measured and calculated results. Vardar and Finnie9

ested three types of brittle materials (granodiorite, limestone
nd greenstone) with Brazilian test and did predictions based
n bending test using normal stress criterion. They reported that
he used criterion is not expected to be valid for materials with
pherical flaws and anisotropic materials. Three-point bending
ests on extruded porcelain cylinder with radius of 5 and 7 mm
ere applied by Lamon and Evans10 with three different span

engths. They investigated the size effect for internal and sur-
ace dominated flaw populations with a non-coplanar energy
elease rate criterion and showed consistent results between
he observed and expected values. They stated that the inter-
al flaw population dominates at large radii and short span
engths whereas the surface flaw population becomes impor-
ant at small radii and long span lengths. Lamon11 predicted
he strengths of disks loaded by uniform pressure and 3-point-
ending specimens of alumina from 4-point bending-failure
ata using the maximum non-coplanar energy release rate cri-
erion and showed a close agreement between the predicted and
xperimental strength values. The multiaxial loading fracture of
l2O3 tubes has been examined experimentally for five different

oading conditions, uniaxial axial tension, uniaxial hoop ten-
ion, axial tension/internal pressure, axial compression/internal
ressure and pure torsion.12,13 Comparison with theory showed
hat the normal stress criterion underestimated the experimental
esults. They stated that this underestimation may be related to
he fact that this criterion neglects important shear effects and
hey suggested a modification for shear stress effects in order
o provide a more accurate description of ceramic brittle frac-
ure for a wider variety of different stress state. Thiemeier et
l.14 compared the results of 4-point-bending tests and ring-
n-ring tests with aluminium nitride considering the maximum
rincipal stress criterion, the coplanar energy release rate cri-
erion, the maximum hoop stress criterion, the minimum strain
nergy density, the maximum non-coplanar energy release rate
riterion and the empirical criterion of Richard. They predicted
he mean strength for ring-on-ring test from 4-point-bending
est data using a through-wall crack model and a semicircu-
ar surface crack model. Although in both cases the deviation
etween predicted and experimental results were significant (up
o approximately 11%), they reported that for the empirical cri-
erion of Richard and the criterion of the maximum non-coplanar
nergy release rate, the theory and experiment agreed well. The
aximum hoop stress criterion provided very good agreement

etween theory and experiment in case of through-wall crack but
ignificant deviations occurred if the more realistic crack model

f a semicircular crack is used. Furthermore, for both crack mod-
ls, the deviation between the criteria which give the best and
orst agreement was approximately 13%. Scheunemann15 per-

ormed experiments with alumina rings subjected to internal
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ressure and then predicted numerically the strength of the rings
ith different sizes according to different multiaxial criteria.
e reported that the empirical criterion of Richard with α1 = 10

howed the best agreement which means that a criteria with
igh shear-sensitivity will generate best results. On the other
and, Ikeda and Igaki16 performed 4-point bending of plates and
oncentric-ring–ring loading of disks under hydrostatic pres-
ure with soda-lime glass in order to achieve triaxial stress state
nd related to the experimental results they concluded that the
xperimental results agree with the statistical fracture theory for
hear-insensitive cracks. Furthermore, Brazilian disc test was
erformed by Brückner-Foit et al.4,17 in order to determine the
ailure behaviour of natural flaws contained in low- and high-
trength ceramics namely, stoneware material, alumina, HIPSN
ABB material), HIPSN (ESK material), under multiaxial load-
ng and the results of the test series, analysed using multiaxial
ailure criteria, were compared with the outcome of the other
est series (4-point-bending test, concentric-ring test, cold-spin
isc test). According to the findings of fractographic examina-
ion, for the alumina specimens which contain both volume and
urface flaws, the surface flaws were determined to be critical.
n the other hand, failure of both stoneware and silicon nitride
aterials was triggered by volume flaws. Based on the refer-

nce tests performed with 4-point-bending test or cold-spin disc
est, a good agreement was only obtained if a shear-insensitive

ultiaxiality criterion was used.
The opinion of the researchers here is divided such that while

ome those say shear stresses have to be taken into account but
thers claim that shear-insensitive criteria give better agreement
etween the numerical and experimental results. The main prob-
em with the most of the reports is that mostly uniaxial or biaxial
ests were performed where the portion of the shear stresses was
ot dominant. For example Dortmans and With18 predicted the
trength for the ball-on-ring and ring-on-ring biaxial tests using
he 3- and 4-point-bending test results of alumina and reported
hat a combination of tests with varying degree of stress multi-
xiality is required for correct determination of the most suitable
ultiaxial failure criteria. Moreover, in most cases the number of

he specimens was small and therefore the results were affected
y large scattering. Danzer et al.19 showed the effect of num-
er of specimens on the Weibull parameters of a silicon nitride
nd concluded that for a reasonable determination of Weibull
arameters, at least 30 specimens should be tested.

In this article, tension–torsion tests were performed with alu-
ina (Alsint 99.7) specimens. This type of experiment was

elected since it is very similar to the loading of a hydraulic pis-
on in an axial piston machine and provides a multiaxial stress
tate. In this experiment a high percentage of torsion was applied,
o that the distinction between the multiaxial failure criteria is
xpected to be more reliable. Cocks and Searle20 investigated
he growth of grain-boundary cavities and cracks under multi-
xial stress states in the fine-grained crystalline materials and
hey expressed the need for extensive testing of ceramic materi-

ls under multiaxial stress states. Approximately 30 specimens
ere tested under two different load cases and for each case

he Weibull parameters m and σ0 were determined experimen-
ally. In the numerical part, the effective volumes and effective
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ig. 1. Picture of the experimental setup22: (1) Plunger cylinder, (2) connecting
rm, (3) sample, (4) plunger cylinders, (5) torsion load launching block, and (6)
estraint.

urfaces of the specimens were calculated for both cases with a
ommercial finite element program ABAQUS and finite element
ostprocessor STAU21 using different multiaxial failure criteria.
n the following, the experimental setup will be first introduced
nd later the theoretical background of multiaxial statistical
nalysis will be explained briefly. Finally the experimental and
umerical results will be given and compared according to dif-
erent multiaxial failure criterion.

. Experimental setup

In this part the experimental setup which was constructed and
ntroduced by Scheunemann22 will be described. A picture of
he experimental setup is represented in Fig. 1.

The lower part of the sample (3) is mounted in the restraint
6) which is a fixed bearing as seen in Fig. 2a. The upper part is
lamped by a torsion load launching block (5) which is a move-
ble bearing and is able to rotate around the z-axis. The shear
orce Fy is applied with two coaxially fixed plunger cylinders
4a, 4b) as shown in Fig. 2b. The pressure difference between
hese two plunger cylinders defines the shear force Fy which
an be calculated as Fy = (πd2

p/4) (p1 − p2) where dp is the
iameter of the plunger cylinder and p1, p2 are the pressures
pplied by the plunger cylinders. The discharge of load from
pecimen to the launching block (5) was applied through a steel
all embedded in the launching block in the first trials of the
achine but later a ram was used for which the contact point in

he launching block stays as far as possible from the middle level
o that the twisting movement of the specimen goes in the min-
mum lateral drift of the contact point. The compression force
z is applied by a plunger cylinder (1) and through a connecting
rm (2) which transmits the force by a ratio of 5:1. The control
ystem of the total experimental setup works through PC with

A/AD converter and a software DASYLAB. The compression

orce is applied by an operating pressure and the shear force is
pplied by electrically controlled direction valve. The plunger
ylinders consist of a cylinder block with a straight cylinder bore

w
n
V
σ
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nd a cylinder pin (12 mm diameter) as a piston. The sealing on
he piston occurs in the gap of the bore where the leak oil is
ischarged at the end of the bore. Thereby no contact type seal
s needed against working pressure since the leak oil is simply
revented by seal ring. With this way, it is possible to construct
riction loss plunger cylinders.

Two types of loads are carried on the specimen as given
n Fig. 2c. A shear force Fy acts on the specimen in the y-
irection by two plunger cylinders (4a, 4b) as a function of time
s Fy(t) = (Fmax

y /10 sec) × t where t is the time and Fy
max is

he maximum applied shear force and it is equal toFmax
y = 1 kN.

compression force Fz which is 5 times higher than shear force
z = 5 Fy deforms the specimen in z-direction by the combina-

ion of plunger cylinder (1) and connecting arm (2) as a function
f time as Fz(t) = (5Fmax

y /10 sec) × t. The compression force
s not applied as a point force but as a pressure on the top of the
pecimen. The effect of the shear force on the specimen appears
s a torsion τz = Fy × hx and a bending moment Mx = Fy × hz

see Fig. 3a) where hx = 25.6 mm and hz = 20 mm (see Fig. 2c).
he main aim for the application of a shear force in this manner,
here it creates torsion and bending moment, is to make the
ortion of the effect of shear stress on the failure of advanced
eramics clear. The shear force, which brings the primary tor-
ion, was applied one-sided and the loading rate was regulated
n such a manner that the specimen fails in 1.5 s.

Since the upper and lower parts of the specimens are con-
trained, they show a rigid body motion. Therefore the middle
art (notched part) which stays between the upper and lower
onstraints will be simulated numerically. The dimensions of the
nvestigated section of specimens are given in Fig. 3b. As stated
n the introduction, two load cases will be investigated. In case-1
he specimens will be tested under both shear force Fy and com-
ression force Fz whereas in case-2 only with shear force Fy. In
ase-1, both Fy and Fz start to deform the specimen until the fail-
re occurs. As the failure occurs, the maximum principal stress
alue will be calculated using the measured Fy and Fz values
nd will be recorded as the strength of the specimen. In case-2,
he same experimental procedure will be applied but this time
he specimen will be loaded only with Fy. These experiments
re carried out in dry conditions at room temperature.

. Multiaxial statistical analysis

More than 70 years ago, Weibull derived a statistical theory
f brittle fracture.1,2 Since that time, the Weibull distribution
unction has become the most widely used function in mechan-
cal design of ceramic components. The simplest form of the
o-called Weibull function23 is given in Eq. (1) for a uniaxial
omogeneous tensile stress state.

F,V (σ, V ) = 1 − exp

[
− V

V0

(
σ

σ0

)m]
(1)
here PF,V(σ,V) is the failure probability of a ceramic compo-
ent due to the volume flaws, V is the volume of the component,
0 is the unit volume containing average number of cracks,
is uniaxial applied stress, m is the Weibull modulus which
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Fig. 2. (a) Front view of the setup, (b) top view of the setup, a

escribes the scatter of the strength and σ0 is the cumulative
ean stress at which the failure probability is 63.2% for a spec-

men with a volume V = V0.
In general, the stress distribution within a ceramic component

s not constant but takes different values at different positions.
urthermore, in reality the orientation of the cracks in ceramic

omponents is randomly distributed. As a result normal and
hear stresses acting in the crack plane cause Mode-I, Mode-II
nd Mode-III loading of the cracks. Therefore, a proper account
f the spatial variation in the stress triaxiality (e.g. effect of shear
tresses) must be taken using a multiaxial failure criterion.5,24,25

The orientation of such a crack at point r̄ in the global Carte-
ian coordinate system is given by the direction of the normal
f the crack, R̄ relative to three principal axes σ , σ and σ

⎡
⎢⎣
σn

τII

τIII

⎤
⎥⎦ =

⎡
⎢⎣

sin2 (θ) cos2 (ψ)

− sin (ψ) cos (ψ) sin (θ) sin

cos2 (ψ) sin (θ) cos (θ) sin
n 1 2 3
hich is described by the Euler angles φ, θ, ψ in Fig. 4. Since

he orientation of the crack is given in a unit sphere, one of the
ngles (e.g. φ) can be eliminated according to the relationship

ig. 3. (a) Applied loading state on the specimen and (b) the dimensions of the
nvestigated alumina specimen.

σ

w
l
w
s
n
t

F

side view of the setup and the applied loads on the specimen.

iven below7,26:

os2(φ) + cos2(θ) + cos2(ψ) = 1 (2)

The stress tensor acting on the area of a penny-shaped crack,
hose normal is given by R̄n vector in Fig. 4, as a function of
rincipal stresses can be written as follows10,27:

(θ) sin2 (ψ) cos2 (θ)

cos (ψ) sin (θ) 0

) sin (θ) cos (θ) − sin (θ) cos (ψ)

⎤
⎥⎦
⎡
⎢⎣
σ1 (r̄)

σ2 (r̄)

σ3 (r̄)

⎤
⎥⎦ (3)

here σn is the normal stress and τII, τIII are the shear stresses in
ode-II and Mode-III. Failure due to cracks subjected to mixed-
ode loading is commonly expressed in terms of an equivalent
ode-I stress intensity factor KI,eq as17:

(KI,KII,KIII) = f (KI,eq, 0, 0) (4)

Using Eq. (4), an equivalent stress σeq can be defined which
epends on the normal and shear stresses

eq(x, y, z, ψ, θ) = KI,eq

YI
√
c

(5)

here YI is the geometric function for mode-I and c is the crack
ength. The equivalent stress is the uniaxial tensile stress which

ould have the same damaging action as an applied polyaxial

tress state.28 The proper definition of the equivalent stress does
ot only depend on the type (position, orientation, etc.) of frac-
ure causing crackbut also the fracture criterion for the polyaxial

ig. 4. Representation of a crack in the principal stress coordinate system.
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tress state. Then the stress σ in Eq. (1) should be replaced by
he equivalent stress σeq as

F,V

(
σeq, V

) = 1 − exp

[
− 1

V0

∫
V

1

4π

∫ 2π

0

∫ π

0

(
σeq(x, y, z, ψ

σ0

The equivalent stress σeq can be decomposed as

eq(x, y, z, ψ, θ) = σ∗g(x, y, z, ψ, θ) (7)

here σ* is the reference stress (e.g. maximum principal tensile
tress in the component) and g(x, y, z, ψ, θ) is the geometry
unction which characterizes the stress distribution relative to
he reference stress in the component. Then the effective volume
an be calculated by29:

eff =
∫
V

1

4π

∫ 2π

0

∫ π

0
(g(x, y, z, ψ, θ))m sinθ dθdψdV (8)

The final form of the failure probability function can be for-
ulated as following:

F,V

(
σ∗, Veff

) = 1 − exp

[
−Veff

V0

(
σ∗

σ0

)m]
(9)

Eq. (9) introduces the size effect of the ceramic components.
or a prescribed failure probability, the strengths σ0,1 and σ0,2
or two load cases (case-1 and case-2) with effective volumes
eff,1 and Veff,2 have a relationship as given below30:

σ0,1

σ0,2

)
exp erimental

=
((

Veff,2

Veff,1

)1/m
)

numerical

(10)

In order to calculate the failure probability of a multiaxially
tressed ceramic component, σeq has to be defined. In literature,
any different proposals have been reported for the definition of

quivalent stress in ceramics but a general agreement on the most
ppropriate has not been reached. One of the most frequently
sed criteria is the principle of independent action (PIA) where
ll principle stresses act independently. In this study, STAU was
sed for the calculation of effective volumes and effective sur-
aces and therefore the multiaxial failure criteria will be used
hich were implemented in STAU. Since PIA criterion does not

xist in STAU, the first principle stress criterion (FPS) will be
sed instead according to the fact that as Danzer et al.5 stated,
or a material with a Weibull modulus of m = 20, there is only
% deviation between PIA and FPS and this difference between
he equivalent stresses is often hidden by the scatter of data. In
he following, the considered multiaxial failure criteria in this
rticle will be introduced.

.1. Normal stress criterion

This criterion is based on the assumption that crack extends
n the plane perpendicular to the direction of maximum normal
ensile stress at the crack tip regardless of initial plane of the

rack4,17,31. Depending on this assumption, the equivalent stress
s defined as

eq = σn (11)

m

σ

ramic Society 30 (2010) 3339–3349 3343

)m
sinθ dθdψdV

]
(6)

Erdogan and Sih31 investigated crack extension in a large
lexiglass (commercial version Plex. II) plates due to its

sotropic properties, ease of machining and natural cracks in this
aterial. These plates were subjected to a general plane loading

nd this criterion was verified theoretically and experimentally
ith cracked plates under combined tension and shear.

.2. First principle stress criterion

Here it is assumed that the failure is just governed by the
aximum principal stress σ1 as given below.32

eq = σ1 (12)

.3. von Mises stress criterion

The von Mises stress criterion states that failure occurs
hen the energy of distortion reaches the energy needed for
ield/failure. This criterion is used mostly for ductile materials.
he equivalent stress according to this criterion is defined as

eq = 1√
2

√
(σ1 − σ2)2 + (σ2 − σ3)2 + (σ1 − σ3)2 (13)

.4. The coplanar energy release rate criterion

It is one of the most often used criteria in the literature and
t assumes that KIC = KIIC and the only criterion which takes

IIIC into account. In this criterion, it is assumed that the crack
xtends in the direction of its original plane and the unstable
rack propagation occurs when the energy rate reaches a critical
alue.33,34

eq =
√
σ2

1 + τ2
II

(
YII

YI

)2

+ τ2
III

1 − v

(
YIII

YI

)2

(14)

here v is the Poisson’s ratio,σ1 is the maximum principal stress,
I, YII, YIII are the geometric functions for Mode-I, Mode-II and
ode-III.

.5. The maximum non-coplanar energy release rate
riterion

This criterion assumes that the crack extends in the direc-
ion of a plane where the energy release rate reaches its

10,35
aximum. The definition of equivalent stress is:

eq = 4

√
σ4
n + 6σ2

nτ
2
II

(
YII

YI

)2

+ τ4
II

(
YII

YI

)4

(15)
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Fig. 5. Paths for the roughness measurements.

.6. The maximum hoop stress criterion

This criterion assumes that the crack grows in the direction
here the tangential stress component takes its maximum value

t the crack tip.31 The equivalent stress according to this criterion
s written as

eq =
√

8

[
2σn + 6

√
σ2
n + 8τ2

II(YII/YI)2
]
τ3

II(YII/YI)3

[
σ2
n + 12τ2

II(YII/YI)2 − σn

√
σ2
n + 8τ2

II(YII/YI)2
]1.5

(16)

.7. The empirical criterion of Richard

This criterion is based on fitting a large set of experimental
ata obtained under multiaxial loading.36 The equivalent stress
s defined as

eq = 1

2

⎡
⎣σn +

√
σ2
n + 4τ2

IIα
2
1

(
YII

YI

)2
⎤
⎦ (17)

here

1 = KIC

KIIC
(18)

According to experimental studies with alumina,37,38 α1 gets
alues between 0.5 and 1.3. Fett and Munz38 computed the
ixed-mode stress intensity factors for infinitesimally small

ink cracks in front of a pre-existing crack and compared
ith the empirical Richard criterion. They concluded that this

riterion provides an excellent interpolation for kink crack
roblems.

Using the finite element program ABAQUS and finite

σA,1 (MPa) =

⎡
⎢⎣

0 0 0

0 −15 679

0 679 −19
lement postprocessor STAU, the effective volumes and
ffective surfaces of the specimens for both load cases
ith above introduced mutiaxial failure criteria will be

alculated.

F
a

p
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. Results and discussion

.1. Experimental results

In this part the experimental results are presented. In the
xperimental part of this study, 28 specimens were tested under
ase-1 loading conditions (shear with compression) and 27
pecimens were tested under case-2 loading conditions (shear
ithout compression). The surfaces of the specimens were
round and then polished. Surface roughness measurements
ere performed for two profiles as given in Fig. 5.
The measured average roughness was Ra = 0.54 ± 0.049 �m

or the first profile and Ra = 0.53 ± 0.046 �m for the second
rofile. After the experimental tests, the fracture angle of the
pecimens was measured in order to see the difference in crack
ath between the case-1 and case-2. In Fig. 6a, the bottom part
f a broken alumina specimen is shown. The fracture angle β
s measured by introduction of a fracture plane as shown in
ig. 6b. The fracture angle was determined on the specimens for
oth cases.

In Fig. 7 some examples of the broken specimens for both
ases are shown. Since the fracture surface was rough, it was not
ossible to measure the accurate fracture angle in most cases.

Therefore, an interval is given for the measured fracture angle
alues. For case-1 (with compression), the fracture angle was
etween 35◦ <β1 < 42◦ and for case-2 (without compression)
etween 44◦ <β2 < 52◦. Here it was observed that application of
he compression force decreases the fracture angle β. In order
o measure the crack-path orientation more precisely, two speci-

ens were broken partially under case-1 loading conditions and
he crack path was observed by infiltration of tint as given in
ig. 8. The angle of the crack propagation was determined as
1◦.

In both loading cases, the maximum shear stresses and max-
mum principal stresses occur at point-A which is shown in
ig. 9.

The simple geometry makes it easy to calculate the stress
ensor at point-A. The stress tensors at point-A for both cases
re given below (coordinate system as given in Fig. 9).

σA,2 (MPa) =

⎡
⎢⎣

0 0 0

0 0 679

0 679 0

⎤
⎥⎦ (19)

In case-2 pure shear stresses occur at point-A. Furthermore,
n case-1 the ratio of shear stresses to compression stresses is

ore than 3:1. Therefore, this test stand is suitable in order
o investigate the effect of shear stresses on failure of ceramic

aterials in multiaxial stress state. According to the given stress
ensors in Eq. (19), the maximum principal stress values are
1,1 = 578 MPa for case-1 and �1,2 = 679 MPa for case-2. Using

he stress tensors given in Eq. (19), the fracture angle β was
stimated according to the normal stress criterion as shown in

ig. 10. For case-1 the fracture angle was calculated as β1 = 41◦
nd for case-2 as β2 = 45◦.

By relating the measured fracture angles with broken and
artially broken specimens, it can be concluded that the failure



S. Nohut et al. / Journal of the European Ceramic Society 30 (2010) 3339–3349 3345

Fig. 6. (a) Bottom part of a broken specimen and (b) determination of the fracture angle β which is the angle between the coordinate system and the fracture plane.
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Fig. 7. Pictures of the broken specime

f ceramics under multiaxial stress state can be well described
y the normal stress criterion.

The scatter of the strength values for both cases is shown
ithin a Weibull diagram in Fig. 11. The strength values in the
eibull diagram are the maximum principal stresses calculated

elated to the fracture force.
The Weibull parameters for case-1 and case-2 are calculated

y maximum-likelihood method39 and the Weibull modulus m
s corrected by a bias factor b(n) according to Thoman et al.40

mcorr = mb(n)

b(n) = tanh1.87
(
n− 3.855

0.678

)0.21375 (20)
here mcorr is the corrected Weibull modulus, n is the sample
ize. The experimentally measured Weibull parameters for case-
and case-2 respectively are given below with 90% confidence t

Fig. 8. Crack propa
(a and b) case-1 and (c and d) case-2.

nterval.

1 = 7.5 [5.9, 9.7]

0,1 = 524 MPa [500 MPa, 548 MPa] (case-1)

2 = 7.3[5.4, 8.8]

0,2 = 431 MPa [409 MPa, 453 MPa] (case-2)

The left-handside of Eq. (10) is equal to

σ0,1
)

σ0,2 experimental
= 1.216 (21)

In order to determine the accuracy of the experimental results,
he measurement uncertainties of the experimental setup was

gation path.
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Fig. 9. Representation of the point-A where maximum principal stress occurs.

Fig. 10. Expected fracture angle on x–z plane using the stress tensor given in
Eq. (19) according to normal stress criterion for (a) case-1 and (b) case-2.

Fig. 11. Representation of scatter of strength by Weibull distribution for both
cases (material: AlSint 99.7).
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Fig. 12. Stress distribution obtained with A
eramic Society 30 (2010) 3339–3349

alculated. The measurement uncertainties of the fracture stress
re composed of the uncertainties of (a) the measuring device
applied load on the specimen) and (b) the reproducibility of the
ounting (load application).

(a) The load application is measured redundantly with a load
cell and two pressure devices. The minimal reproducibil-
ity of the pressure device add up to 
p = 0.02 MPa. This
failure leads to an absolute measurement uncertainty of

σcase-2 = 2.6 MPa and 
σcase-1 = 3.1 MPa, since the pres-
sure affects both the axial and the radial force.

b) The uncertainty of load application depends on how the
specimen was mounted. Since the stress cannot be mea-
sured within the specimen, the following assumptions on
load application have been made:
• vertical reproducibility of load application

v = ±0.5 mm

• horizontal reproducibility of load application

h = ±0.1 mm

The result of eccentric load application has been computed
y FE-methods. The relative stress uncertainties are determined
o

vertically: 
σvertically = 0.7%σ
horizontally: 
σhorizontally = 2.3%σ

Hence the absolute measurement uncertainties for the
verage stress values add up to: 
σcase-2 = 5.6 MPa and
σcase-1 = 18.7 MPa. The most significant uncertainty is pro-

oked by the axial load application. The relative measurement
rror for case-1 is 3.6% and for case-2 is 1.3%.

.2. Numerical results

For the numerical calculations, the Weibull modulus will be
aken as m = 7.4 for both cases. In Fig. 12, the stress distribution
btained by FEM at the middle of the specimens for both cases
re displayed.
The maximum principal stress is equal to 601 MPa for case-1
nd 702 MPa for case-2. This difference between the values of
aximum principal stresses in Fig. 12 shows the effect of the

pplied compressive force. Furthermore the application of the

BAQUS for (a) case-1 and (b) case-2.
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Table 1
Comparison of numerical and experimental results.

Multiaxial failure criterion Veff,1 [mm3] Veff,2 [mm3] Seff,1 [mm2] Seff,2 [mm2] (Veff,2/Veff,1)1/m (Seff,2/Seff,1)1/m (σ0,1/σ0,2)exp

I Norm. Str. Crit. 0.304 0.407 2.847 5.864 1.040 1.103 1.216
II Max. Princ. Str. Crit. 6.869 8.716 1.033 1.216
III Empr. Crit. Richard (α1 = 0.5) 0.637 0.753 5.784 6.514 1.023 1.016 1.216
IV von Mises Str. Crit. 16.633 15.794 0.993 1.216
V Max. Non-copl. Ene. Rel. Rate 9.087 7.186 41.354 36.411 0.969 0.983 1.216
VI Emp. Crit. Richard (α1 = 1.0) 9.892 7.17S 44.701 31.688 0.958 0.955 1.216
VII Copl. En. Rel. Rate 4.469 3.193 23.034 15.677 0.956 0.949 1.216
VIII Max. Hoop Str. Crit 24.619 16.861 104.711 77.487 0.950 0.960 1.216
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Fig. 13. Comparison of the experimental and numerical results acc

ompressive force changes the stress distribution which results
n different effective volume and effective surface values. The
otal volume of the middle part shown in Fig. 12 is equal to
067.9 mm3 and the total surface is equal to 917.3 mm2.

The effective volume and effective surface of the specimens
ere calculated with STAU for different multiaxial failure cri-

eria and the results are given in Table 1.
It was not possible to calculate the effective surfaces for
he maximum principal stress criterion and von Mises crite-
ion with STAU. When the effective volumes for case-1 are
ompared, the effective volume calculated with the maximum

m
(
r

Fig. 14. Comparison of the experimental and numerical results (effective vo
g to effective volume (�) and effective surface (©) computations.

oop stress criterion is approximately 80 times higher than the
ffective volume calculated with normal stress criterion. This
eans, a failure probability calculation using Eq. (9) with the
aximum hoop stress criterion would predict the failure prob-

bility 80 times higher than with normal stress criterion. This
hows the importance of using the most appropriate multiaxial
ailure criterion for designing ceramic components. For the nor-
al stress criterion, the maximum hoop stress criterion and the

aximum non-coplanar criterion, the ratio of effective surfaces

Seff,2/Seff,1)1/m showed a better agreement with the experimental
esults than the ratio of effective volumes (Veff,2/Veff,1)1/m while

lumes (�), effective surfaces (©)) for different Weibull parameters.
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or other criteria, the ratio of effective volumes showed better
esults. Comparing the numerical results with the experimen-
al ones showed that the normal stress criterion shows the best
greement. Since the ratio of the effective surface gives better
esults, it can be concluded that specimens failed due to sur-
ace flaws. The deviation between the experimentally measured
0,1/σ0,2 and numerically calculated (Seff,2/Seff,1)1/m is 9.3%.
he representation of the comparison of numerical results with

he experimentally determined σ0,1/σ0,2 is given in Fig. 13.
The upper and lower dashed lines show the 90% confi-

ence interval. Furthermore, same numerical calculations are
erformed with m = 5.4 and m = 9.7 (which are the highest and
owest values of the 90% confidence interval level) and the
esults with these Weibull modulus values are shown with error
ars in Fig. 14. In all cases, calculation with m = 5.4 showed
better agreement. It can be seen in Fig. 14 that the Weibull
odulus does not have a big effect on the numerical prediction.
sing Eqs. (8) and (10) can be written as given below:

Veff,2

Veff,1

)1/m

=
(∫

V

1
4π

∫ 2π

0

∫ π
0

(g2(x, y, z, ψ, θ))m sinθ dθdψdV∫
V

1
4π

∫ 2π

0

∫ π
0

(g1(x, y, z, ψ, θ))m sinθ dθdψdV

)1/m

(22)

here g1(x, y, z,ψ, θ) and g2(x, y, z,ψ, θ) are the geometry func-
ions for case-1 and case-2. The term 1/m in Eq. (22) minimizes
he effect of the Weibull modulus.

. Conclusion

In this article, tension–torsion tests were performed with
lumina specimens under two different load cases. Fracture
ngles measured with the broken specimens showed that crack
ropagates perpendicular to the normal stress. Afterwards, the
umerically calculated effective volumes and effective surfaces
elated to different multiaxial failure criteria for two load cases
ere used in order to identify the most appropriate multiaxial

ailure. Comparison of the experimental and numerical results
howed that normal stress criterion is the most appropriate cri-
erion for the characterization of failure of alumina ceramics
nder multiaxial stress state. Since the prediction with effective
urfaces provided a better agreement, it was concluded that the
pecimens failed due to surface flaws.
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